SGTR: End-to-end Scene Graph Generation with Transformer

The illustration of SGTR pipeline paradigm. We formulate SGG as a bipartite graph construction process. First, the entity and predicate nodes are generated, respectively. Then we assemble the bipartite scene graph from two types of nodes

Abstract

Scene Graph Generation (SGG) remains a challenging visual understanding task due to its compositional property. Most previous works adopt a bottom-up two-stage or a point-based one-stage approach, which often suffers from high time complexity or sub-optimal designs. In this work, we propose a novel SGG method to address the aforementioned issues, formulating the task as a bipartite graph construction problem. To solve the problem, we develop a transformer-based end-to-end framework that first generates the entity and predicate proposal set, followed by inferring directed edges to form the relation triplets. In particular, we develop a new entity-aware predicate representation based on a structural predicate generator that leverages the compositional property of relationships. Moreover, we design a graph assembling module to infer the connectivity of the bipartite scene graph based on our entity-aware structure, enabling us to generate the scene graph in an end-to-end manner. Extensive experimental results show that our design is able to achieve the state-of-the-art or comparable performance on two challenging benchmarks, surpassing most of the existing approaches and enjoying higher efficiency in inference. We hope our model can serve as a strong baseline for the Transformer-based scene graph generation. Code is available: https://github.com/Scarecrow0/SGTR

Publication
In Conference on Computer Vision and Pattern Recognition 2022
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Click the Slides button above to demo Academic’s Markdown slides feature.

Supplementary notes can be added here, including code and math.

Related